Abstract

The magnetic core is a key component of a linear transformer driver (LTD), and the accuracy of the core model affects the calculation of the LTD power flow and the prediction of the output waveform. In this paper, a magnetization model based on the inverse Jiles-Atherton (inverse J-A) model is developed and a particle swarm algorithm is used to identify the parameters and to obtain the variation of the parameters with the excitation characteristic. A nanoseconds square wave LTD magnetic core test platform was built to obtain the magnetization characteristics of nanocrystalline magnetic cores under different excitation characteristic parameters. Under square wave pulses, due to the presence of harmonic components, core loss is more complex. In view of the fitting deviation caused by the traditional J-A model not considering harmonic factors and anisotropy, a dynamic loss correction factor is proposed. Through a comparison of experimental and simulation results, this model can well reflect the magnetization process and has high accuracy in fitting dynamic hysteresis loops and predicting losses, which is important for guiding the design of a square pulse LTD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call