Abstract

Electron-transfer reactions are ubiquitous in chemistry and biology. The electrons’ quantum nature allows their transfer across long distances. For example, in the well-known harpoon mechanism, electron transfer results in Coulombic attraction between initially neutral reactants, leading to a marked increase in the reaction rate. Here, we present a different mechanism in which electron transfer from a neutral reactant to a multiply charged cation results in strong repulsion that encodes the electron-transfer distance in the kinetic energy release. Three-dimensional coincidence imaging allows to identify such “inverse” harpoon products, predicted by nonadiabatic molecular dynamics simulations to occur between H2 and HCOH2+ following double ionization of isolated methanol molecules. These dynamics are experimentally initiated by single-photon double ionization with ultrafast extreme ultraviolet pulses, produced by high-order harmonic generation. A detailed comparison of measured and simulated data indicates that while the relative probability of long-range electron-transfer events is correctly predicted, theory overestimates the electron-transfer distance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.