Abstract

Traditional CT systems face a tradeoff between temporal resolution, volumetric coverage and cone beam artifacts and also have limited ability to customize the distribution of incident x-rays to the imaging task. Inverse geometry CT (IGCT) can overcome some of these limitations by placing a small detector opposite a large, rotating scanned source array. It is difficult to quickly rotate this source array to achieve rapid imaging, so we propose using stationary source arrays instead and investigate the feasibility of such a system. We anticipate that distinct source arrays will need to be physically separated, creating gaps in the sinogram. Symmetry can be used to fill the missing rays except those connecting gaps. With three source arrays, a large triangular field of view emerges. As the small detector orbits the patient, each source spot must be energized at multiple specifically designed times to ensure adequate sampling. A timing scheme is proposed that avoids timing clashes, efficiently uses the detector, and allows for simple collimation. The two-dimensional MTF, noise characteristics, and artifact levels are all found to be comparable to parallel-beam systems. A complete, 100 millisecond volumetric scan may be feasible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.