Abstract

In this paper, an inverse-free dynamical system is built to solve the absolute value equations (AVEs), whose equilibrium points coincide with the solutions of the AVEs. Under proper assumptions, the equilibrium points of the dynamical system exist and could be (globally) asymptotically stable. In addition, with strongly monotone property, a global projection-type error bound is provided to estimate the distance between any trajectories and the unique equilibrium point. Compared with four existing dynamical systems for solving the AVEs, our method is inverse-free and is still valid even if 1 is an eigenvalue of the coefficient matrix. Some numerical simulations are given to show the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.