Abstract

To control the fluid loss of water-based drilling fluids (WBDFs) in salt-gypsum formations, a nano-SiO2 graft copolymer was prepared by inverse emulsion polymerization. The polymer (EAANS) was prepared with acrylamide, 2-acrylamido-2-methyl-1-propane sulfonic acid, N-vinylpyrrolidone, and KH570-modified nano-silica (M-SiO2) as raw materials. The molecular structure and morphology of EAANS were characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance, thermogravimetric analysis, transmission electron microscopy (TEM), and other methods. In the temperature range of 150 °C, 2 wt % EAANS can reduce the API filtration volume of the base slurry to within 20 mL and the HP-HT filtration volume at 150 °C to 21.8 mL. More importantly, 2 wt % EAANS can maintain the API filtration volume less than 10 mL even when the concentration of NaCl or CaCl2 was as high as 36 or 30 wt %, and as the salt/calcium content increased, the amount of filtration continued to decrease. The results of TEM, X-ray diffraction, particle size distribution, and scanning electron microscopy showed that the fluid loss control mechanism of EAANS was that EAANS can form a crosslinked network structure in the solution and adsorb on the clay surface, so as to reduce the particle size of clay particles, increase the proportion of fine particles in drilling fluids, and finally form a dense filter cake to reduce the filtration volume. Because of the excellent filtration performance of EAANS at high Na+/Ca2+ concentration, EAANS can become a promising WBDF fluid loss reducer in salt-gypsum formations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.