Abstract
We study an inverse boundary value problem on the determination of principal order coefficients in isotropic nonautonomous heat flows stated as follows; given a medium, and in the absence of heat sources and sinks, can the time-dependent thermal conductivity and volumetric heat capacity of the medium be uniquely determined from the Cauchy data of temperature and heat flux measurements on its boundary? We prove uniqueness in all dimensions under an assumption on the thermal diffusivity of the medium, which is defined as the ratio of the thermal conductivity and volumetric heat capacity. Our assumption on the thermal diffusivity is related to construction of certain families of exponential solutions to the heat equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.