Abstract

Chronic alcohol feeding increases the levels of 2-arachidonoylglycerol (2-AG) in the liver, which activates hepatic cannabinoid receptor type 1 (CB1R), leading to oxidative liver injury. 2-AG biosynthesis is catalyzed by diacylglycerol lipase (DAGL). However, the mechanisms regulating hepatic DAGL gene expression and 2-AG production are largely unknown. In this study, we show that CB1R-induced estrogen-related receptor γ (ERRγ) controls hepatic DAGL gene expression and 2-AG levels. Arachidonyl-2'-chloroethylamide (ACEA), a synthetic CB1R agonist, significantly upregulated ERRγ, DAGLα, and DAGLβ, and increased 2-AG levels in the liver (10mg/kg) and hepatocytes (10μM) of wild-type (WT) mice. ERRγ overexpression upregulated DAGLα and DAGLβ expressions and increased 2-AG levels, whereas ERRγ knockdown abolished ACEA-induced DAGLα, DAGLβ, and 2-AG in vitro and in vivo. Promoter assays showed that ERRγ positively regulated DAGLα and DAGLβ transcription by binding to the ERR response element in the DAGLα and DAGLβ promoters. Chronic alcohol feeding (27.5% of total calories) induced hepatic steatosis and upregulated ERRγ, leading to increased DAGLα, DAGLβ, or 2-AG in WT mice, whereas these alcohol-induced effects did not occur in hepatocyte-specific CB1R knockout mice or in those treated with the ERRγ inverse agonist GSK5182 (40mg/kg in mice and 10μM in vitro). Taken together, these results indicate that suppression of alcohol-induced DAGLα and DAGLβ gene expressions and 2-AG levels by an ERRγ-specific inverse agonist may be a novel and attractive therapeutic approach for the treatment of alcoholic liver disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.