Abstract
BackgroundMucins are large glycoproteins that cover epithelial surfaces of the body. All mucins contain at least one PTS domain, a region rich in proline, threonine and serine. Mucins are also characterized by von Willebrand D (VWD) domains or SEA domains. We have developed computational methods to identify mucin genes and proteins based on these properties of the proteins. Using such methods we are able to characterize different organisms where genome sequence is available with respect to their mucin repertoire.ResultsWe have here made a comprehensive analysis of potential mucins encoded by the chicken (Gallus gallus) genome. Three transmembrane mucins (Muc4, Muc13, and Muc16) and four gel-forming mucins (Muc6, Muc2, Muc5ac, and Muc5b) were identified. The gel-forming mucins are encoded within a locus similar to the corresponding human mucins. However, the chicken has an additional gene inserted between Muc2 and Muc5ac that encodes the the α-subunit of ovomucin, a protein similar to Muc2, but it is lacking a PTS domain. We also show that the β-subunit of ovomucin is the orthologue of human MUC6. The transmembrane Muc13 gene is in chicken as well as in mammals adjacent to the HEG (heart of glass) gene. HEG has PTS, EGF and transmembrane domains like Muc13, suggesting that these two proteins are evolutionary related. Unlike previously known mucins, the PTS domain of Muc13 is encoded by multiple exons, where each exon encodes a repeat unit of the PTS domain.ConclusionWe report new mucin homologues in chicken and this information will aid in understanding the evolution of mucins in vertebrates. The fact that ovomucin, a protein not found in mammals, was located in the same locus as other gel-forming mucins provides strong support that these proteins are evolutionary related. Furthermore, a relationship of HEG and the transmembrane Muc13 is suggested on the basis of their biochemical properties and their presence in the same locus. Finally, our finding that the chicken Muc13 is distributed between multiple exons raises the interesting possibility that the length of the PTS domain could be controlled by alternative splicing.
Highlights
Mucins are large glycoproteins that cover epithelial surfaces of the body
We considered a protein sequence to be a potential mucin if it contained at least one PTS domain as well as a von Willebrand D (VWD) or SEA domain
We have shown that chicken has a set of mucins comparable to that of human we fail to identify a homologue to the gel-forming MUC19 and to the transmembrane MUC3, MUC12, MUC15 and MUC17 proteins
Summary
Mucins are large glycoproteins that cover epithelial surfaces of the body. We have developed computational methods to identify mucin genes and proteins based on these properties of the proteins. Using such methods we are able to characterize different organisms where genome sequence is available with respect to their mucin repertoire. We have developed bioinformatics methods to identify and characterize mucin genes based on these distinct properties of mucins [2]. Using such methods, we recently carried out an analysis of the puffer fish Fugu rubripes [2]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.