Abstract
We consider spacelike surfaces in the four-dimensional Minkowski space and introduce geometrically an invariant linear map of Weingarten-type in the tangent plane at any point of the surface under consideration. This allows us to introduce principal lines and an invariant moving frame field. Writing derivative formulas of Frenet-type for this frame field, we obtain eight invariant functions. We prove a fundamental theorem of Bonnet-type, stating that these eight invariants under some natural conditions determine the surface up to a motion. We show that the basic geometric classes of spacelike surfaces in the four-dimensional Minkowski space, determined by conditions on their invariants, can be interpreted in terms of the properties of the two geometric figures: the tangent indicatrix, and the normal curvature ellipse. We apply our theory to a class of spacelike general rotational surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.