Abstract

The quasi-spherical Szekeres dust solutions are a generalization of the spherically symmetric Lemaitre-Tolman-Bondi dust models where the spherical shells of constant mass are non-concentric. The quasi-spherical Szekeres dust solutions can be considered as cosmological models and are potentially models for the formation of primordial black holes in the early universe. Any collapsing quasi-spherical Szekeres dust solution where an apparent horizon covers all shell-crossings that will occur can be considered as a model for the formation of a black hole. In this paper we will show that the apparent horizon can be detected by a Cartan invariant. We will show that particular Cartan invariants characterize properties of these solutions which have a physical interpretation such as: the expansion or contraction of spacetime itself, the relative movement of matter shells, shell-crossings and the appearance of necks and bellies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.