Abstract

The theory of types with which we shall be concerned is intended to be a full scale system for formalizing intuitionistic mathematics as developed, for example, in the book by Bishop 1967. The language of the theory is richer than the language of first order predicate logic. This makes it possible to strengthen the axioms for existence and disjunction. In the case of existence, the possibility of strengthening the usual elimination rule seems first to have been indicated by Howard 1969, whose proposed axioms are special cases of the existential elimination rule of the present theory. Furthermore, there is a reflection principle which links the generation of objects and types and plays somewhat the same role for the present theory as does the replacement axiom for Zermelo-Fraenkel set theory. An earlier, not yet conclusive, attempt at formulating a theory of this kind was made by Scott 1970. Also related, although less closely, are the type and logic free theories of constructions of Kreisel 1962 and 1965 and Goodman 1970. In its first version, the present theory was based on the strongly impredicative axiom that there is a type of all types whatsoever, which is at the same time a type and an object of that type. This axiom had to be abandoned, however, after it was shown to lead to a contradiction by Jean Yves Girard. I am very grateful to him for showing me his paradox. The change that it necessitated is so drastic that my theory no longer contains intuitionistic simple type theory as it originally did. Instead, its proof theoretic strength should be close to that of predicative analysis. Mathematical objects and their types. We shall think of mathematical objects or constructions. Every mathematical object is of a certain kind or type. Better, a mathematical object is always given together with its type, that is, it is not just an object, it is an object of a certain type.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.