Abstract
In the very near future, transportation will go through a transitional period that will shape the industry beyond recognition. Smart vehicles have played a significant role in the advancement of intelligent and connected transportation systems. Continuous vehicular cloud service availability in smart cities is becoming a crucial subscriber necessity which requires improvement in the vehicular service management architecture. Moreover, as smart cities continue to deploy diversified technologies to achieve assorted and high-performance cloud services, security issues with regards to communicating entities which share personal requester information still prevails. To mitigate these concerns, we introduce an automated secure continuous cloud service availability framework for smart connected vehicles that enables an intrusion detection mechanism against security attacks and provides services that meet users’ quality of service (QoS) and quality of experience (QoE) requirements. Continuous service availability is achieved by clustering smart vehicles into service-specific clusters. Cluster heads are selected for communication purposes with trusted third-party entities (TTPs) acting as mediators between service requesters and providers. The most optimal services are then delivered from the selected service providers to the requesters. Furthermore, intrusion detection is accomplished through a three-phase data traffic analysis, reduction, and classification technique used to identify positive trusted service requests against false requests that may occur during intrusion attacks. The solution adopts deep belief and decision tree machine learning mechanisms used for data reduction and classification purposes, respectively. The framework is validated through simulations to demonstrate the effectiveness of the solution in terms of intrusion attack detection. The proposed solution achieved an overall accuracy of 99.43% with 99.92% detection rate and 0.96% false positive and false negative rate of 1.53%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.