Abstract
The paper forms the second part of an introduction to the SHE, a physically-based, distributed catchment modelling system produced jointly by the Danish Hydraulic Institute, the British Institute of Hydrology and SOGREAH (France) with the financial support of the Commission of the European Communities. The SHE is physically-based in the sense that the hydrological processes of water movement are modelled either by finite difference representations of the partial differential equations of mass, momentum and energy conservation, or by empirical equations derived from independent experimental research. Spatial distribution of catchment parameters, rainfall input and hydrological response is achieved in the horizontal by an orthogonal grid network and in the vertical by a column of horizontal layers at each grid square. Each of the primary processes of the land phase of the hydrological cycle is modelled in a separate component as follows: interception, by the Rutter accounting procedure; evapotranspiration, by the Penman-Monteith equation; overland and channel flow, by simplifications of the St. Venant equations; unsaturated zone flow, by the one-dimensional Richards equation; saturated zone flow, by the two-dimensional Boussinesq equation; snowmelt, by an energy budget method. Overall control of the parallel running of the components and the information exchanges between them is managed by a FRAME component. Careful attention has been devoted to a modular construction so that improvements or additional components (e.g. water quality and sediment yield) can be added in the future. Considerable operating flexibility is provided through the ability to vary the level of sophistication of the calculation mode to match the availability or quality of the data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.