Abstract
Intrinsic reaction coordinate (IRC) calculations of the internal rotation (torsional) potentials for H(2)O(2) and its isotopomers HDO(2) and D(2)O(2) were carried out at the CCSD(T)/CBS//aug-cc-pVDZ level. Two extrapolation methods were used to obtain energies in the complete basis set (CBS) limit. The full IRC potential was constructed from scans from the C(2v) (cis) and C(2h) (trans) transition states to the equilibrium C(2) (gauche) structure. The IRC potential for H(2)O(2) was fit to a five-term Fourier function; coefficients were compared with values obtained from spectroscopic data. The twofold IRC torsional potentials were used to obtain torsional eigenvalues, which yielded values of the transitions between various ntau states. These results compare favorably with Raman and near-infrared data. Our calculations provide values of the cis and trans barriers of 2495 and 364 cm(-1), respectively, which are in good agreement with both previously calculated and experimentally derived values. It appears that coupling between torsional motion and other degrees of freedom is not significant in these molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.