Abstract

A new model based on the theory of dynamical systems is proposed for the intrinsic random or systems is proposed for the intrinsic random or pseudo-random mechanism underlying certain types of muscular tremor. The active length-tension curve of the individual sarcomere, in conjunction with the passive length-tension relation is a map from length to tension with an observed time delay between length change and resulting tension change. The passive length tension relation is assumed to instantaneously relate this tension change back to a change in length. The stability properties of this iterated interval map are investigated by means of computer simulation and computation of the Lyapunov exponent and the bifurcation tree. The resulting analysis is related to experimental tremor data in the literature in terms of period doubling, bifurcation points, and "chaotic" behavior. The model appears to have its most fruitful application in understanding the insect type and isometric mammalian types of tremor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.