Abstract

Abstract We consider the class of all linear functionals $L$ on a unital commutative real algebra $A$ that can be represented as an integral w.r.t. to a Radon measure with compact support in the character space of $A$. Exploiting a recent generalization of the classical Nussbaum theorem, we establish a new characterization of this class of moment functionals solely in terms of a growth condition intrinsic to the given linear functional. To the best of our knowledge, our result is the first to exactly identify the compact support of the representing Radon measure. We also describe the compact support in terms of the largest Archimedean quadratic module on which $L$ is nonnegative and in terms of the smallest submultiplicative seminorm w.r.t. which $L$ is continuous. Moreover, we derive a formula for computing the measure of each singleton in the compact support, which in turn gives a necessary and sufficient condition for the support to be a finite set. Finally, some aspects related to our growth condition for topological algebras are also investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.