Abstract

We consider the motion of n point particles of positive masses that interact gravitationally on the 2-dimensional hyperbolic sphere, which has negative constant Gaussian curvature. Using the stereographic projection, we derive the equations of motion of this curved n-body problem in the Poincaré disk, where we study the elliptic relative equilibria. Then we obtain the equations of motion in the Poincaré upper half plane in order to analyze the hyperbolic and parabolic relative equilibria. Using techniques of Riemannian geometry, we characterize each of the above classes of periodic orbits. For n=2 and n=3 we recover some previously known results and find new qualitative results about relative equilibria that were not apparent in an extrinsic setting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.