Abstract
The purpose of this study was to develop a novel intravascular loopless monopole antenna (ILMA) design specifically for imaging of small vessel walls. The ILMA consisted of an unshielded, low-friction guide wire and a tuning/matching box. The material of the guide wire was nitinol and it was coated with polyurethane. Because the guide wire was unshielded, it could be made thinner than the coaxial cable-based loopless intravascular antenna design. The material of the box was aluminum. In this study, the diameter of the guide wire was 0.5 mm and the length was 58.7 mm. The ILMA was used as a receiving antenna and body coil for transmission. To verify the feasibility of the ILMA, in vitro and in vivo experiments were performed on a 3.0-T magnetic resonance (MR) scanner. In vitro tests using the ILMA indicated that the proposed design could be used to image target vessel walls with a spatial resolution of 313 μm at the frequency coding direction and more than 100 mm of longitudinal coverage. In vivo tests demonstrated that the images showed the vessel walls clearly by using the ILMA and also indicated that the ILMA could be used for small vessels. The proposed antenna may therefore be utilized to promote MR-based diagnoses and therapeutic solutions for cardiovascular atherosclerotic diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.