Abstract

Amyloids are a family of self-aggregating proteins implicated in various central nervous system disorders, including Alzheimer's disease (AD). It is thought that prefibrillar soluble forms of amyloid peptides, including oligomers, may be the main pathogenic factor in AD. Herein we describe the fabrication of well-defined, functionalized, monomeric beta-amyloid peptide surfaces for studying protein-protein interactions. We first prepared a nonaggregating analogue of the beta-amyloid peptide and then attached it to a gold surface covered with a self-assembled monolayer (SAM) of alkanethiols. After attachment, the native form of the beta-amyloid peptide (Abeta40) was obtained by surface-level intramolecular O-N migration. The surface was characterized by atomic force microscopy (AFM) and self-assembled monolayer for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (SAMDI-TOF MS). The interaction between the surface-bound Abeta40 and monoclonal anti-Abeta40 antibody was tracked by AFM and chemiluminescence, which revealed that the Abeta40 was attached mainly in its monomeric form and that the protein-protein complex was assembled on the surface. Last, we used a proteomics approach to demonstrate the specificity of the Abeta40-functionalized surface in surface-binding experiments employing serum amyloid P (SAP) and bovine serum albumin (BSA).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.