Abstract

Peroxy radical hydrogen-shifts are pivotal elementary reaction steps in the oxidation of small hydrocarbons in autoignition and the lower atmosphere. Although these reactions are typically associated with a substantial barrier, we demonstrate that the [1,5]H-shift in the peroxy species derived from the 2-hydroxyphenyl radical 1 is so facile that it even proceeds rapidly in an argon matrix at 35 K through a proton-coupled electron transfer mechanism. Hydrogen-bound complexes of o-benzoquinone are identified as the main reaction products by infrared spectroscopy although their formation through O-O bond scission is hampered by a barrier of 11.9 kcal mol-1 at the ROCCSD(T)/cc-pVTZ/UB3LYP/6-311G(d,p) level of theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.