Abstract
IntroductionHuman models of noninvasive breast tumors are limited, and the existing in vivo models do not mimic inter- and intratumoral heterogeneity. Ductal carcinoma in situ (DCIS) is the most common type (80%) of noninvasive breast lesions. The aim of this study was to develop an in vivo model whereby the natural progression of human DCIS might be reproduced and studied. To accomplish this goal, the intraductal human-in-mouse (HIM) transplantation model was developed. The resulting models, which mimicked some of the diversity of human noninvasive breast cancers in vivo, were used to show whether subtypes of human DCIS might contain distinct subpopulations of tumor-initiating cells.MethodsThe intraductal models were established by injection of human DCIS cell lines (MCF10DCIS.COM and SUM-225), as well as cells derived from a primary human DCIS (FSK-H7), directly into the primary mouse mammary ducts via cleaved nipple. Six to eight weeks after injections, whole-mount, hematoxylin and eosin, and immunofluorescence staining were performed to evaluate the type and extent of growth of the DCIS-like lesions. To identify tumor-initiating cells, putative human breast stem/progenitor subpopulations were sorted from MCF10DCIS.COM and SUM-225 with flow cytometry, and their in vivo growth fractions were compared with the Fisher's Exact test.ResultsHuman DCIS cells initially grew within the mammary ducts, followed by progression to invasion in some cases into the stroma. The lesions were histologically almost identical to those of clinical human DCIS. This method was successful for growing DCIS cell lines (MCF10DCIS.COM and SUM-225) as well as a primary human DCIS (FSK-H7). MCF10DCIS.COM represented a basal-like DCIS model, whereas SUM-225 and FSK-H7 cells were models for HER-2+ DCIS. With this approach, we showed that various subtypes of human DCIS appeared to contain distinct subpopulations of tumor-initiating cells.ConclusionsThe intraductal HIM transplantation model provides an invaluable tool that mimics human breast heterogeneity at the noninvasive stages and allows the study of the distinct molecular and cellular mechanisms of breast cancer progression.
Highlights
Human models of noninvasive breast tumors are limited, and the existing in vivo models do not mimic inter- and intratumoral heterogeneity
Human Ductal carcinoma in situ (DCIS) cells initially grew within the mammary ducts, followed by progression to invasion in some cases into the stroma
The lesions were histologically almost identical to those of clinical human DCIS. This method was successful for growing DCIS cell lines (MCF10DCIS.COM and SUM-225) as well as a primary human DCIS (FSK-H7)
Summary
Human models of noninvasive breast tumors are limited, and the existing in vivo models do not mimic inter- and intratumoral heterogeneity. Ductal carcinoma in situ (DCIS) is the most common type (80%) of noninvasive breast lesions. The aim of this study was to develop an in vivo model whereby the natural progression of human DCIS might be reproduced and studied. The 5-year survival rates for noninvasive and locally invasive breast cancers are 98% and 83.3%, respectively. Most DCIS lesions in mice originate from the terminal branches of the mammary tree This is true in humans, where the majority of DCIS originate in the terminal duct lobular units (TDLUs). The origin of lobular carcinoma in situ (LCIS) is less clear, but most investigators favor the idea that LCIS originates in the TDLUs. Microarray and histologic studies indicate that the heterogeneity in human breast cancers arises early at the noninvasive stages in DCIS [2]. The degree of heterogeneity may explain differences in patient outcome with respect to a risk for malignant progression
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.