Abstract

Free radical therapy based on 5-aminolevulinic acid (ALA, a precursor of the photosensitizer protoporphyrin IX (PpIX)) has been approved by the US Food and Drug Administration for clinical tumor treatment. However, PpIX can be quickly converted into photoinactive heme, leading to unexpectedly paused production of free radicals and severely hindering its therapeutic benefits. Here, inspired by the natural biotransformation of ALA (ALA-PpIX-heme), an uninterrupted reactive oxygen species generator (URG) that converts useless heme to peroxidase mimics via intracellular self-assembly is developed. The URG is prepared by enwrapping ALA-loaded polyamide-amine dendrimers in red blood cell membrane vesicles with a further surface modification of G-quadruplex-structured AS1411. The URGs realize "1 O2 -•OH" uninterrupted generation through "recycling waste" in two steps: i) PpIX generates 1 O2 under laser irradiation; and ii) the photoinactive metabolite heme self-assembled with AS1411 to catalyze H2 O2 conversion into •OH. Interestingly, the specific generation of 1 O2 in mitochondria and •OH in nuclei further augments the free-radical-induced damage. It is demonstrated that URG can continuously produce free radicals for 6 h postirradiation, and shows 3.3-times more than that of the nonassembly group, achieving nearly 80% regression of tumors in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call