Abstract

SUMMARYAn interval random model is introduced for the response analysis of structural‐acoustic systems that lack sufficient information to construct the precise probability distributions of uncertain parameters. In the interval random model, the uncertain parameters are treated as random variables, whereas some distribution parameters of random variables with limited information are expressed as interval variables instead of precise values. On the basis of the interval random model, the interval random structural‐acoustic finite element equation is constructed, and an interval random perturbation method for solving this interval random equation is proposed. In the proposed method, the interval random matrix and vector are expanded by the first‐order Taylor series, and the response vector of the structural‐acoustic system is calculated by the matrix perturbation method. According to the linear monotonicity of the response vector, the lower and upper bounds of the response vector are calculated by the vertex method. On the basis of the lower and upper bounds, the intervals of expectation and standard variance of the response vector are obtained by the random interval moment method. The numerical results on a shell structural‐acoustic model and an automobile passenger compartment with flexible front panel demonstrate the effectiveness and efficiency of the proposed method. Copyright © 2013 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call