Abstract

Finite element analysis of linear-elastic structures with spatially varying uncertain properties is addressed within the framework of the interval model of uncertainty. Resorting to a recently proposed interval field model, the uncertain properties are expressed as the superposition of deterministic basis functions weighted by particular unitary intervals. An Interval Finite Element Method (IFEM) incorporating the interval field representation of uncertainties is formulated by applying an interval extension in conjunction with the standard energy approach. Uncertainty propagation analysis is performed by adopting a response surface approach which provides approximate explicit expressions of response bounds requiring only a few deterministic analyses. Then, the whole procedure is implemented in ABAQUS’ environment by coding User Subroutines and Python scripts.2D plane stress and bending problems involving uncertain Young's modulus of the material are analyzed. The accuracy of the proposed IFEM as well as response variability under spatially dependent uncertainty are investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.