Abstract

This paper investigates an anti-disturbance sliding mode control strategy for a rigid satellite system with external disturbance under the prescribed performance constraints. An interval observer is firstly introduced to generate the interval estimation of the attitude angular velocity. Then a finite time identical disturbance reconstruction strategy is developed by using the interval estimation. Based on the novel performance function and error transformation constraints, the attitude tracking error is converted into a new error system that guarantees the desired transient and steady-state responses for the tracking error. Then, by introducing the reconstructed disturbance, a finite time anti-disturbance controller is constructed with the backstepping method. The stability of the strategy is guaranteed by the Lyapunov stability method. Finally, simulation results demonstrate the effectiveness of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.