Abstract

This study presents an Interval-based Multi-objective Robust Design Optimization (IB-MORDO) algorithm applied to a vehicle dynamic problem. The proposed algorithm optimizes a full 15 degrees-of-freedom (15-DOF) vehicle model, subjected to a double-lane change (DLC) maneuver under random road profiles, to attain driver comfort and safety. This study does not make assumptions about uncertain parameter statistics; instead, the uncertainties are quantified using a non-probabilistic α-cut level interval analysis. These uncertainties are applied to the system parameters and design variables to ensure robust results. After the optimization process, the root mean square (RMS) vertical acceleration at the driver’s seat resulted in a robust solution of 1.041 m/s2 and a parameter interval radius (IR) equals to 0.631 m/s2, whereas the RMS lateral acceleration at the driver’s seat resulted in a solution of 1.908 m/s2 with an interval radius of 0.168 m/s2. Unlike the Robust Optimization, the algorithm proposed herein considers uncertainties at system parameters and design variables without assuming any statistical data. HIGHLIGHTS An Interval-based Robust Multi-objective Optimization procedure is proposed and tested on a 15-DOF vehicle model. Αn α-cut level methodology is used to deal with the uncertainty propagation. Resulted optimal suspension parameters minimize center and interval radius of driver’s vertical and lateral accelerations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.