Abstract

Bounds on distances or similarity measures can be useful to help search large databases efficiently. Here we consider the case of large databases of small molecules represented by molecular fingerprint vectors with the Tanimoto similarity measure. We derive a new intersection inequality which provides a bound on the Tanimoto similarity between two fingerprint vectors and show that this bound is considerably sharper than the bound associated with the triangle inequality of the Tanimoto distance. The inequality can be applied to other intersection-based similarity measures. We introduce a new integer representation which relies on partitioning the fingerprint components, for instance by taking components modulo some integer M and reporting the total number of 1-bits falling in each partition. We show how the intersection inequality can be generalized immediately to these integer representations and used to search large databases of binary fingerprint vectors efficiently.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.