Abstract

The seafloor spreading evolution in the Southern Indian Ocean is key to understanding the initial breakup of Gondwana. We summarize the structural lineaments deduced from the GEOSAT 10 Hz sampled raw altimetry data as well as satellite derived gravity anomaly map and the magnetic anomaly lineation trends from vector magnetic anomalies in the West Enderby Basin, the Southern Indian Ocean. The gravity anomaly maps by both Sandwell and Smith 1997, J. Geophys. Res. 102, 10039–10054 and 10 Hz raw altimeter data show almost the same general trends. However, curved structural trends, which turn from NNW–SSE in the south to NNE–SSW in the north, are detected only from gravity anomaly maps by 10 Hz raw altimeter data just to the east of Gunnerus Ridge. NNE–SSW structural trends and magnetic anomaly lineation trends that are perpendicular to them are observed between the Gunnerus Ridge and the Conrad Rise. To the west of Gunnerus Ridge, structural elements trend NNE–SSW and magnetic polarity changes are normal to them. In contrast, almost NNW–SSE structural trends and ENE–WSW magnetic polarity reversal strikes are dominant to the east of Gunnerus Ridge. Curved structural trends, which turn from WNW–ESE direction in the south to NNE–SSW direction in the west, and magnetic polarity reversal strikes that are almost perpendicular to them are observed just south of Conrad Rise. The magnetic polarity reversals may be parts of the Mesozoic magnetic anomaly sequence that formed along side of the structural lineaments before the long Cretaceous normal polarity superchron. Curved structural trends, detected only from gravity anomaly maps by 10 Hz raw altimeter data, most likely indicate slight changes in spreading direction from an initial NNW–SSE direction to NNE–SSW. Our results also suggest that these curved structural trends are fracture zones that formed during initial breakup of Gondwana.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.