Abstract

A severe problem has developed with respect to the efficiency of certain hot-side electrostatic precipitators. The problem is manifested by a time dependent degradation of performance in which back corona related to a condition of high ash resistivity is the influencing factor. Performance can be restored by thorough cleaning of the precipitator only to experience the degradation once again. This paper hypothesizes an explanation for these observations. Experiments with both high and low resistivity ashes using resistivity test cells and a laboratory corona discharge device have been run to prove the validity of the suggested explanation. Data substantiate the idea that in the precipitation process a thin layer of ash more or less permanently remains on the collection plates and that the sodium ions serving as charge carriers in the conduction process through the layer are depleted leaving a thin layer of ash having extremely high resistivity. This phenomenon is called electrode polarization, sodium deple...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.