Abstract
Interpretable machine learning tools including LIME (Local Interpretable Model-agnostic Explanations) and ALE (Accumulated Local Effects) are incorporated into a transformer-based deep learning model, named SolarFlareNet, to interpret the predictions made by the model. SolarFlareNet is implemented into an operational flare forecasting system to predict whether an active region on the surface of the Sun would produce a >=M class flare within the next 24 hours. LIME determines the ranking of the features used by SolarFlareNet. 2D ALE plots identify the interaction effects of two features on the predictions. Together, these tools help scientists better understand which features are crucial for SolarFlareNet to make its predictions. Experiments show that the tools can explain the internal workings of SolarFlareNet while maintaining its accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.