Abstract

BackgroundThe prevalence of type 2 diabetes is increasing at an alarming rate. Various complications are associated with type 2 diabetes, with diabetic nephropathy being the leading cause of renal failure among diabetics. Often, when patients are diagnosed with diabetic nephropathy, their renal functions have already been significantly damaged. Therefore, a risk prediction tool may be beneficial for the implementation of early treatment and prevention.ResultsIn the present study, we developed a decision tree-based model integrating genetic and clinical features in a gender-specific classification for the identification of diabetic nephropathy among type 2 diabetic patients. Clinical and genotyping data were obtained from a previous genetic association study involving 345 type 2 diabetic patients (185 with diabetic nephropathy and 160 without diabetic nephropathy). Using a five-fold cross-validation approach, the performance of using clinical or genetic features alone in various classifiers (decision tree, random forest, Naïve Bayes, and support vector machine) was compared with that of utilizing a combination of attributes. The inclusion of genetic features and the implementation of an additional gender-based rule yielded better classification results.ConclusionsThe current model supports the notion that genes and gender are contributing factors of diabetic nephropathy. Further refinement of the proposed approach has the potential to facilitate the early identification of diabetic nephropathy and the development of more efficient treatment in a clinical setting.

Highlights

  • The prevalence of type 2 diabetes is increasing at an alarming rate

  • The best accuracy, sensitivity, and specificity were achieved by the three, six, and seven-attribute model in support vector machine (SVM), random forest, and Naïve Bayes, as well as decision tree, respectively

  • The performance was slightly better than using individual clinical features for classification, but it was still much lower compared to that of blood creatinine (BC), blood urinary nitrogen (BUN), or urinary albumin

Read more

Summary

Introduction

The prevalence of type 2 diabetes is increasing at an alarming rate. Various complications are associated with type 2 diabetes, with diabetic nephropathy being the leading cause of renal failure among diabetics. Often, when patients are diagnosed with diabetic nephropathy, their renal functions have already been significantly damaged. Diabetes can result in various complications, damaging the heart, blood vessels, eyes, kidneys, and nerves. As one of the major microvascular complications of diabetes, diabetic nephropathy affects about 30% of the people with type 1 diabetes (T1D), and 25-40% of the people with type 2 diabetes (T2D) [2]. DN is among the leading causes of end stage renal disease (ESRD), imposing serious impact on morbidity, mortality and the patients’ quality of life [2]. Compared to non-diabetics, the likelihood of dying from renal disease is 17 times greater for diabetics [3]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call