Abstract
The El Niño-Southern Oscillation (ENSO) dominates Earth’s year-to-year climate variability and can often cause severe environmental and socioeconomic impacts globally. However, despite continuous ENSO theory and modeling advances, the global heat signature variations preceding ENSO events have not been fully understood, especially for long-lead ENSO forecasts more than 12 months in advance. Here, we develop an interpretable, deep learning (DL)-based ENSO forecast model that uses artificial intelligence to discover the long-term spatial and temporal processes of heat signatures associated with ENSO in the global ocean. More specifically, our results highlight the critical roles of ocean interbasin interactions and tropic–extratropic interactions in ENSO forecasts and are confirmed by our sensitivity forecasting experiments. The model has good forecast performance, with an effective ENSO forecast length of 22 months on the test set (1982 to 2020) and minimal influence from the spring predictability barrier (SPB). Moreover, our experimentally validated model performance does not degrade much even with using sea surface temperature (SST) alone, which has direct implications for operational forecasts since globally complete ocean subsurface measurements are not always available.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.