Abstract
An extraction of medical knowledge from cardiological data is proposed in this work, it is based on relevant intelligent method called fuzzy decision tree. It could lead to increase understanding the cause of various abnormal beats in cardiac activity, leading to a better medical diagnosis. The performance of this technique is evaluated on the MIT-BIH Arrhythmia Database following the AAMI recommendations. The first part of this paper discusses the characterization of heart beats. It is considered as an important step in arrhythmias classification. In a second part we apply the fuzzy decision tree to recognize some cardiac abnormalities. In the last part we discuss the activity of fuzzy decision rules extracted from cardiological data analyzing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.