Abstract
In recent years, machine learning algorithms, especially deep learning, have shown promising prospects in solving Partial Differential Equations (PDEs). However, as the dimension increases, the relationship and interaction between variables become more complex, and existing methods are difficult to provide fast and interpretable solutions for high-dimensional PDEs. To address this issue, we propose a genetic programming symbolic regression algorithm based on transfer learning and automatic differentiation to solve PDEs. This method uses genetic programming to search for a mathematically understandable expression and combines automatic differentiation to determine whether the search result satisfies the PDE and boundary conditions to be solved. To overcome the problem of slow solution speed caused by large search space, we propose a transfer learning mechanism that transfers the structure of one-dimensional PDE analytical solution to the form of high-dimensional PDE solution. We tested three representative types of PDEs, and the results showed that our proposed method can obtain reliable and human-understandable real solutions or algebraic equivalent solutions of PDEs, and the convergence speed is better than the compared methods. Code of this project is at https://github.com/grassdeerdeer/HD-TLGP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.