Abstract

In this paper, an improved interpolating moving least-squares (IIMLS) method with nonsingular weight function is presented. The shape function of the IIMLS method satisfies the property of Kronecker δ function. The IIMLS method can overcome the difficulties caused by the singularity of the weight function in the interpolating moving least-squares (IMLS) method presented by Lancaster and Salkauskas. By combining the boundary integral equation (BIE) method with the IIMLS method, an improved interpolating boundary element-free (IIBEF) method is presented for two-dimensional potential problems. The IIBEF method is a direct meshless boundary integral equation method in which the basic unknown quantities are the real solutions to the nodal variables, and the boundary conditions can be applied directly and easily. Thus, it gives greater computational precision. Some numerical examples are presented to demonstrate the IIMLS and IIBEF methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.