Abstract

Activation of pattern recognition receptors and proper regulation of downstream signaling are crucial for host innate immune response. Upon infection, the NF-κB and interferon regulatory factors (IRF) are often simultaneously activated to defeat invading pathogens. Mechanisms concerning differential activation of NF-κB and IRF are not well understood. Here we report that a MAVS variant inhibits interferon (IFN) induction, while enabling NF-κB activation. Employing herpesviral proteins that selectively activate NF-κB signaling, we discovered that a MAVS variant of ~50 kDa, thus designated MAVS50, was produced from internal translation initiation. MAVS50 preferentially interacts with TRAF2 and TRAF6, and activates NF-κB. By contrast, MAVS50 inhibits the IRF activation and suppresses IFN induction. Biochemical analysis showed that MAVS50, exposing a degenerate TRAF-binding motif within its N-terminus, effectively competed with full-length MAVS for recruiting TRAF2 and TRAF6. Ablation of the TRAF-binding motif of MAVS50 impaired its inhibitory effect on IRF activation and IFN induction. These results collectively identify a new means by which signaling events is differentially regulated via exposing key internally embedded interaction motifs, implying a more ubiquitous regulatory role of truncated proteins arose from internal translation and other related mechanisms.

Highlights

  • In response to pathogen infection, host cells initiate an immediate innate immune response to defeat pathogen propagation [1,2,3]

  • The short form of mitochondrion antiviral signaling (MAVS) efficiently competes for binding to TRAF2 and TRAF6 against fulllength MAVS, thereby sequestering key adaptors from the signaling cascades mediated by full-length MAVS

  • In an experiment that aims to examine MAVS activation by Sendai virus (SeV) infection or expression of γHV68 vGAT, we observed that a smaller isoform of MAVS, of ~50 kD, did not migrate into the Triton X-100-insoluble fraction in cells infected with SeV or expressing γHV68 vGAT (Fig 1A)

Read more

Summary

Introduction

In response to pathogen infection, host cells initiate an immediate innate immune response to defeat pathogen propagation [1,2,3]. The retinoic acid-inducible gene I (RIG-I) and melanoma differentiation antigen 5 (MDA5) are cytosolic receptors that sense infecting viruses via RNA with distinct structural features [4,5,6]. Upon RNA association, RIG-I and MDA5 dimerize with the mitochondrion antiviral signaling (MAVS) adaptor that, in turn, triggers the activation of IKK (IKKα and β) and TBK-1 or IKKε ( known as IKKi) kinase [7,8,9,10]. TBK-1 and IKKε phosphorylate the interferon regulatory factors (IRF) to enable the expression and secretion of interferons (IFN), e.g., interferon β [13,14]. As such, these signaling events cumulate in establishing an effective antiviral state

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call