Abstract

The PRELID-TRIAP1 family of proteins is responsible for lipid transfer in mitochondria. Multiple structures have been resolved of apo and lipid substrate bound forms, allowing us to begin to piece together the molecular level details of the full lipid transfer cycle. Here, we used molecular dynamics simulations to demonstrate that the lipid binding is mediated by an extended, water-mediated hydrogen bonding network. A key mutation, R53E, was found to disrupt this network, causing lipid to be released from the complex. The X-ray crystal structure of R53E was captured in a fully closed and apo state. Lipid transfer assays and molecular simulations allow us to interpret the observed conformation in the context of the biological role. Together, our work provides further understanding of the mechanistic control of lipid transport by PRELID-TRIAP1 in mitochondria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call