Abstract

This paper presents an interleaved converter that benefits the coupled inductor and built-in transformer voltage multiplier cell (VMC). Compared with the other converters with only a built-in transformer or only a coupled inductor, the combination of these techniques gives an extra degree of freedom to increase the voltage gain. The VMC is composed of the windings of the built-in transformer and coupled inductors, capacitors, and diodes. The voltage stress of MOSFETs is clamped at low values and can be controlled via the turns ratio of the built-in transformer and coupled inductor that increases the design flexibility. Moreover, the energy of the leakage inductances, is recycled to the clamp capacitors which avoids high voltage spikes across MOSFETs. In addition, the current falling rate of the diodes is controlled by the leakage inductances, and the reverse current recovery problem is alleviated. Meanwhile, due to the interleaved structure of the proposed converter, the input current ripple is minimized and the current stress of the power devices is decreased. All of these factors improve the efficiency of the proposed converter in high-current and high-voltage applications. The principle operation and steady-state analysis is given to explore the advantages of the proposed converter. Finally, a 1.3-kW prototype with 50–600 V voltage conversion is built to demonstrate the effectiveness of the proposed converter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call