Abstract
Subgame perfect equilibrium in stationary strategies (SSPE) is the most important solution concept used in applications of stochastic games, which makes it imperative to develop efficient numerical methods to compute an SSPE. For this purpose, this paper develops an interior-point path-following method (IPM), which remedies a number of issues with the existing method called stochastic linear tracing procedure (SLTP). The homotopy system of IPM is derived from the optimality conditions of an artificial barrier game, whose objective function is a combination of the original payoff function and a logarithmic term. Unlike SLTP, the starting stationary strategy profile can be arbitrarily chosen and IPM does not need switching between different systems of equations. The use of a perturbation term makes IPM applicable to all stochastic games, whereas SLTP only works for a generic stochastic game. A transformation of variables reduces the number of equations and variables of by roughly one half. Numerical results show that our method is more than three times as efficient as SLTP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.