Abstract

We propose a new trust region approach for minimizing nonlinear functions subject to simple bounds. By choosing an appropriate quadratic model and scaling matrix at each iteration, we show that it is not necessary to solve a quadratic programming subproblem, with linear inequalities, to obtain an improved step using the trust region idea. Instead, a solution to a trust region subproblem is defined by minimizing a quadratic function subject only to an ellipsoidal constraint. The iterates generated by these methods are always strictly feasible. Our proposed methods reduce to a standard trust region approach for the unconstrained problem when there are no upper or lower bounds on the variables. Global and quadratic convergence of the methods is established; preliminary numerical experiments are reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.