Abstract

We consider the Hamiltonian cycle problem embedded in a singularly perturbed Markov decision process (MDP). More specifically, we consider the HCP as an optimization problem over the space of long-run state-action frequencies induced by the MDP's stationary policies. We show that Hamiltonian cycles (if any) correspond to the global minima of a suitably constructed indefinite quadratic programming problem over the frequency space. We show that the above indefinite quadratic can be approximated by quadratic functions that are `nearly convex' and as such suitable for the application of logarithmic barrier methods. We develop an interior-point type algorithm that involves an arc elimination heuristic that appears to perform rather well in moderate size graphs. The approach has the potential for further improvements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.