Abstract
This paper describes an algorithm for optimization of a smooth function subject to general linear constraints. An algorithm of the gradient projection class is used, with the important feature that the “projection” at each iteration is performed by using a primal–dual interior-point method for convex quadratic programming. Convergence properties can be maintained even if the projection is done inexactly in a well-defined way. Higher-order derivative information on the manifold defined by the apparently active constraints can be used to increase the rate of local convergence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.