Abstract

In this paper, a new interference-tolerant fast convergence zeroing neural network (ITFCZNN) using a novel activation function (NAF) for solving dynamic matrix inversion (DMI) is presented and investigated. Compared with the original zeroing neural network (OZNN) models, the proposed ITFCZNN not only has the ability to converge to 0 within a fixed-time, but also resist different types of interference and noises in solving DMI problems. Besides, detailed mathematical analysis of convergence and robustness of the ITFCZNN are provided. Comparative numerical simulation verifications of the new ITFCZNN and the OZNN activated by other commonly used activation functions (AF) are also provided to demonstrate the better robustness, effectiveness and fixed-time convergence of the ITFCZNN. In addition, a mobile manipulator path tracking application example is given to verify the applicability and feasibility of the ITFCZNN with interference and noises. Both of the theoretical analysis and numerical simulation results verify the effectiveness and robustness of the ITFCZNN model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.