Abstract
The objective of this paper was to study the impact of carbon fiber (Cf) addition on the densification behavior and the microstructure formation of ZrB2 reinforced with SiC whiskers (SiCw). The spark plasma sintering (SPS) performed at 1900 °C led to a near fully dense composite as a result of the synergetic effect between SiCw and Cf on the sintering behavior of ZrB2. The field emission scanning electron microscopy (FESEM), field emission electron probe micro-analyzer (FEEPMA), and X-ray diffraction (XRD) analyses verified the unreactivity of the ZrB2-SiCw-Cf system under the applied sintering conditions. The thermodynamic study proposed the in-situ generation of B4C and ZrC compounds, although any proof could be found in neither X-ray photoelectron spectroscopy (XPS) patterns nor high-resolution transmission electron microscopy (HRTEM) images. Additionally, thanks to the nucleation and growth of new SiC and graphite phases, barely any whisker/fiber form of such additives could be observed in the micrographs. Many dislocations, originating from the plastic deformation during the SPS process and the mismatch between the thermal expansion coefficients of adjacent phases, were found in the microstructure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.