Abstract

Aluminum (Al) metal has been regarded as a promising anode for rechargeable batteries because of its natural abundance and high theoretical specific capacity. However, rechargeable aluminum batteries (RABs) using Al metal as anode display poor cycling performances owing to interface problems between anode and electrolyte. The solid-electrolyte interphase (SEI) layer on the anode has been confirmed to be essential for improving cycling performances of rechargeable batteries. Therefore, we immerse the Al metal in ionic liquid electrolyte for some time before it is used as anode to remove the passive film and expose fresh Al to the electrolyte. Then the reactions of exposed Al, acid, oxygen and water in electrolyte are occurred to form an SEI layer in the cycle. Al/electrolyte/V2O5 full batteries with the thin, uniform and stable SEI layer on Al metal anode perform high discharge capacity and coulombic efficiency (CE). This work illustrates that an SEI layer is formed on Al metal anode in the cycle using a simple and effective pretreatment process and results in superior cycling performances for RABs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.