Abstract

The interface pressure between the cable attachment and the body is crucial for the stable long-term operation of the cable. To solve the issue of interface insulation characteristics’ damage caused by the pressure transducer measurement method, a non-destructive testing method of silicone rubber interface pressure using nonlinear ultrasound is presented. Initially, the study analyzes the propagation characteristics of ultrasonic waves at the interface of cross-linked polyethylene and silicone rubber. The study also establishes the relationship between the nonlinear coefficient and the interface pressure. Subsequently, a nonlinear ultrasonic test platform is constructed using the pulse reflection method to measure the interface pressure of flat silicone rubber and cross-linked polyethylene through nonlinear ultrasonic testing. Theoretical and experimental results indicate that the fundamental amplitude of the frequency domain of the interface reflection wave decreases, and the second harmonic amplitude and nonlinear coefficient both increase as pressure increases. These results demonstrate that the nonlinear ultrasound, non-destructive testing method can accurately evaluate the interfacial pressure state of the cable accessories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.