Abstract

Remote control robots are being found in an increasing number of application domains, including search and rescue, exploration, and reconnaissance. There is a large body of HRI research that investigates interface design for remote navigation, control, and sensor monitoring, while aiming for interface enhancements that benefit the remote operator such as improving ease of use, reducing operator mental load, and maximizing awareness of a robot's state and remote environment. Even though many remote control robots have multi-degree-of-freedom robotic manipulator arms for interacting with the environment, there is only limited research into easy-to-use remote control interfaces for such manipulators, and many commercial robotic products are still using simplistic interface technologies such as keypads or gamepads with arbitrary mappings to arm morphology. In this paper, we present an original interface for the remote control of a multi-degree of freedom robotic arm. We conducted a controlled experiment to compare our interface to an existing commercial keypad interface and detail our results that indicate our interface was easier to use, required less cognitive task load, and enabled people to complete tasks more quickly. In this paper, we present an original interface for the remote control of a multi-degree of freedom robotic arm. We conducted a controlled experiment to compare our interface to an existing commercial keypad interface and detail our results that indicate our interface was easier to use, required less cognitive task load, and enabled people to complete tasks more quickly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.