Abstract

Abstract This paper aims to investigate 3D static thermoelectroelastic problem of a uniform heat flow in a bi-material periodically layered space disturbed by a thermally and electrically-insulated rigid sheet-like inclusion (so-called anticrack) situated at one of the interfaces. An approximate analysis of the considered laminated composite is given in the framework of the homogenized model with microlocal parameters. Accurate results are obtained by constructing suitable potential solutions and reducing to the corresponding homogeneous thermoelectromechanical (or thermomechanical) anticrack problems. The governing boundary integral equation for a planar interface anticrack of arbitrary shape is derived in terms of a normal stress discontinuity. As an illustration, a complete solution for a rigid circular inclusion is obtained in terms of elementary functions and interpreted from the failure perspective. Unlike existing solutions for defects at the interface of materials, the solution obtained displays no oscillatory behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.