Abstract The special observing periods (SOPs) of the Year of Polar Prediction present an opportunity to assess the skill of numerical weather prediction (NWP) models operating over the Antarctic, many of which assimilated additional observations during an SOP to produce some of the most observationally informed model output to date for the Antarctic region and permitting closer examination of model performance under various configurations and parameterizations. This intercomparison evaluates six NWP models spanning global and limited domains, coupled and uncoupled, operating in the Antarctic during the austral summer SOP between 16 November 2018 and 15 February 2019. Model performance varies regionally between each model and parameter; however, the majority of models were found to be warm biased over the continent with respect to ERA5 at analysis, some with biases growing to 3.5 K over land after 48 h. Temperature biases over sea ice were found to be strongly correlated between analysis and 48 h in uncoupled models, but that this correlation can be reduced through coupling to a sea ice model. Surface pressure and 500-hPa geopotential height forecasts and biases were found to be strongly correlated over open ocean in all models, and wind speed forecasts were found to be generally more skillful at higher resolutions with the exception of fast modeled winds over sloping terrain in PolarWRF. Surface sensible and latent heat flux forecasts and biases produced diverse correlations, varying by model, parameter, and gridcell classification. Of the models evaluated, those which couple atmosphere, sea ice, and ocean typically exhibited stronger skill. Significance Statement We evaluated the performance of six numerical weather prediction models operating over the Antarctic during the Year of Polar Prediction austral summer special observing period (16 November 2018–15 February 2019). Our analysis found that several models were as much as 3.5 K warmer than the reference analysis (ERA5) at 48 h over land and were strongly correlated over sea ice in uncoupled models; however, this correlation is reduced through coupling to a sea ice model. Surface pressure biases are communicated to the midtroposphere over the ocean at larger spatial scales, while higher resolution showed an increase in positive wind biases at longer forecasts. Surface turbulent heat fluxes produced complex correlations with other forecast parameters, which should be quantified in future studies. Coupled models that included an ocean/sea ice component typically performed better; providing evidence that the inclusion of such components leads to improved model performance, even at short time scales such as these.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call