Abstract

This paper presents an interactive graphical method to determine the set of fixed-order stabilizing controllers achieving robust performance, in the mixed sensitivity framework. The method is limited to single-input/single-output (SISO) systems but offers significant advantages over traditional loop gain shaping methods such as H/sup /spl infin// and /spl mu/-synthesis. It can handle pure time delays in an exact manner and the weighting functions need not be rational. The technique translates frequency-domain weighting functions and stability constraints into the parameter space and thus gives the user more insights into the design than conventional methods. By virtue of producing the required parameter space region for the frequency response criteria, subsequent optimization of secondary objectives is possible. The controllers obtained are of lower order for comparable performance than those produced by current H/sup /spl infin// and /spl mu/-synthesis techniques. The method is particularly well-suited to robust control problems where frequency-domain constraints emerge from the analysis of nonparametric uncertainties in the system and also to control problems where the frequency domain loop shaping is used to achieve time-domain specifications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.